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Abstract

Using a uni®ed model for high-strain zones, rotation paths of material lines in di�erent ¯ow types are investigated and
presented as stereographic projections. A material fabric element such as a mineral lineation or a fold axis can be plotted on

such stereograms and the rotation path revealed. Using this method, we examine the rotation of folds and the development of
sheath folds in general three-dimensional zonal deformation. We show that the evolution of dragfold geometry in a high-strain
zone depends on the ¯ow type and the initial perturbation of the fold axis. In simple shear zones and thickening zones

(monoclinic or triclinic), dragfolds will evolve into sheath folds. In monoclinic thinning zones with biaxially stretching
boundaries, if the shear direction is parallel to the maximum stretching direction of the boundary, sheath folds will develop. If
the shear direction is parallel to the minimum stretching direction of the boundary, dragfolds become more cylindrical as
deformation advances. In thinning zones with boundaries equally stretched in all directions, the likelihood of sheath fold

development depends on the ratio of the shear strain rate to the thinning rate. In triclinic thinning zones, fold evolution depends
on the details of the ¯ow and the value of initial fold axis perturbation. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

By the end of the 1970s, it was generally accepted
that dragfolds may be progressively rotated by simple
shear towards parallelism with the shear direction
(Bryant and Reed, 1969; Escher and Watterson, 1974;
Hobbs et al., 1976, p. 287). It was then realized that,
under certain conditions, opposite ends of a single fold
hinge may rotate in opposite senses to produce a
sheath fold (not all early authors use the term `sheath
fold') (Howard, 1968; Carreras et al., 1977; Rhodes
and Gayer, 1977; Williams and Zwart, 1977; Bell,
1978; Quinquis et al., 1978; Cobbold and Quinquis,
1980). Skjernaa (1989) claimed that some tight sheath
folds observed in nature (e.g. Hansen, 1971; Williams
and Zwart, 1977; Henderson, 1981) may not be
explained by simple shear alone. Despite this and the
recognition that natural high-strain zones may deviate
signi®cantly from simple shear (Ramberg, 1975; Hobbs
et al., 1976, pp. 266 and 300; Sanderson and Marchini,

1984; Hanmer and Passchier, 1991; Fossen and Tiko�,
1993; Simpson and De Paor, 1993) or even from
monoclinic symmetry (Robin and Cruden, 1994; Jiang
and Williams, 1998; Lin et al., 1998; Jiang, 1999), it
has been tacitly assumed that the simple shear model
is generally applicable. An important observation,
from both the literature and our own experience that
requires explanation, is that sheath folds are common
only in some high-strain zones but are very rare or
even absent from others, even though, in such zones,
fold hinges may be generally rotated towards paralle-
lism with the stretching lineation. Areas such as the
Chedabucto Fault in Nova Scotia, Canada, and the
Monashee complex in the Canadian Cordillera have all
the characteristics of high-strain zone deformation, yet
very few or no sheath folds are developed despite the
fact that fold axes have been rotated (Mawer and
Williams, 1991; McNicoll and Brown, 1994). Further,
the folds all have the same asymmetry, either all s- or
all z-folds.

The occurrence of sheath folds is not haphazard,
although many factors a�ect the evolution of folds in
high-strain zones, including the initial fold geometry
with respect to the ¯ow, the ¯ow characteristics and
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the history of ¯ow. We investigate the in¯uence of
¯ow characteristics in high-strain zones on the evol-
ution of dragfoldsÐfolds which initiate in layers paral-
lel to the zone boundaries in response to vorticity,
with their axes parallel to the vorticity vector (e.g.
Lister and Williams, 1983). Our work therefore extends
the existing sheath fold development model based on
simple shear (e.g. Williams and Zwart, 1977; Quinquis
et al., 1978; Cobbold and Quinquis, 1980) to general
three-dimensional deformation conditions including
triclinic deformation paths. We show that both the
likelihood for dragfolds to develop into sheath folds
and the geometrical relationship between the ®nal
folds and other fabric elements, such as lineations,
vary with ¯ow type. Folds other than dragfolds can
develop in high-strain zones with their initial axes
most likely dependent on the sectional ¯ow in the
plane of the layer (Treagus and Treagus, 1981, 1992;
James and Watkinson, 1993; Jiang, 1999). There may
also be folds that are inherited from pre-high-strain

zone deformation. Given the right geometry and ¯ow
type, these folds may also develop into sheath folds.
There are an in®nite variety of possibilities with non-
dragfolds. We only consider dragfolds in this paper,
but the method introduced here can be used to investi-
gate any fold axis rotation once the initial geometry of
the fold and the ¯ow type are determined.

2. Flow in high-strain zones

A general high-strain zone can be considered as a
zone with biaxially-stretching boundaries plus a shear
on the boundary that is oblique to the principal
stretching directions of the boundaries (Fig. 1; Jiang
and Williams, 1998). The two principal rate-of-stretch
directions of the boundaries are referred to as the a
and c directions, respectively, with strain rates _E a and
_E c (j_E ajRj_E cj by de®nition). The strain rate along the
zone boundary normal is denoted _Eb. The shear direc-

Fig. 1. Nomenclature used in the text to describe a high-strain zone. (a) The undeformed con®guration. (b) The deformed con®guration resulting

from a general triclinic non-coaxial deformation path. The boundaries of the zone undergo biaxial stretching with the minimum rate-of-stretch

(_E a) and maximum rate-of-stretch (_E c) parallel to the a and c directions, respectively. The relative velocity, v, of one boundary (front) with respect

to the other (back) makes an angle Y with respect to the boundary normal. It is decomposed into a boundary-normal component, v_, leading to

thinning or thickening of the zone (_E b), and a boundary-parallel component, v6, leading to shearing which makes an angle f with the a direction.

VNS stands for vorticity-normal section. x 1x 2x 3 is the reference frame used to de®ne the ¯ow.
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tion makes an angle f with respect to the a direction
and the shear strain rate is denoted _g (Fig. 1). In the
reference frame, x1x2x3, established such that x1 and
x3 are parallel to a and c, respectively, and x2 is per-
pendicular to the zone boundary (Fig. 1), the relative
velocity vector of the two zone boundaries v, making
an angle Y with respect to the zone normal (x2), is
decomposed into a boundary-parallel component (v6),
which leads to shearing within the zone, and a bound-
ary-normal component (v_) (Fig. 1). _Eb and _g can be
related to the velocity by (Jiang and Williams, 1998,
eq. 4):

_g � @v

@x2
sin Y, _Eb � @v

@x2
cos Y: �1�

Normalizing _E a and _E c with respect to _Eb for simpler
presentation, we de®ne a and c according to:

a � ÿ_E a=_Eb, c � ÿ_E c=_Eb: �2�

The velocity gradient tensor, L, for the ¯ow within a
general high-strain zone can thus be expressed as (cf.
Jiang and Williams, 1998, eq. 5):

L �
���� @v@x2

����
0@ a � cos Y sin Y � cos f 0
0 b � cos Y 0
0 sin Y � sin f c � cos Y

1A, �3�

where b can have values of ÿ1, 0, or 1. b � ÿ1 rep-
resents a thinning zone where the two material bound-
aries of the zone are moving toward each other, b � 0
a constant-thickness zone where the two material
boundaries maintain the same spacing, and b � 1 a
thickening zone where the two boundaries are moving
away from each other. The terms are chosen to dis-
tinguish these zones from the widening and narrowing
zones of Means (1995) where the zone boundaries
migrate through the material. Thickening and thinning
zones have boundaries that do not migrate through
the material (i.e. they are attached to the same ma-
terial planes) but move further or closer to one
another in response to zone-normal stretching.
Thickening and thinning are not incompatible with
widening and narrowing and, for example, a thicken-
ing zone may be widening or narrowing.

In any ¯ow there are spatial orientations called ¯ow
apophyses (Ramberg, 1975) parallel to which material
lines do not rotate. These spatial orientations are
eigenvectors of L. The ¯ow depicted in Eq. (1) gener-
ally has three apophyses A1, A2 and A3 with stretch-
ings along them, A1, A2 and A3. A1, A2 and A3 can
have any magnitude, but in this paper, A1rA2rA3 by
de®nition in order to avoid redundant treatment of
¯ow. Depending on the behavior of material lines in
the vicinity of apophyses, they have been called attrac-
tors, transits or repulsors of material lines (Passchier,

1997). For the ¯ow described in Eq. (1), two of the

apophyses correspond to a and c. For a thinning zone

(b � ÿ1), A1 and A2 are parallel to c and a, respect-

ively and A3 is inclined to the ac-plane. For a thicken-

Fig. 2. Evolution of dragfold geometry in monoclinic ¯ow. (a) Block

diagram showing the initial con®guration of a dragfold. F is the

mean fold axis with initial perturbations d giving F+ (F� d) and Fÿ

(Fÿ d) within the axial plane (AP) of the fold. The shear direction is

set vertical. (b)±(h) Lower hemisphere stereographic projections of

the rotation loci (solid arrows) of material lines for di�erent types of

monoclinic ¯ows. (c), (e) and (g) are thickening zones and (d), (f)

and (h) are thinning zones. Black, shaded and blank circles in the

stereograms represent ¯ow apophyses A1, A2 and A3, respectively.

Dashed arrows represent progressive rotation of F+ and Fÿ. See

text for further discussion.
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ing zone (b � 1) A3 and A2 are parallel to c and a, re-
spectively and A1 is inclined to the ac-plane. Simple
shear ¯ow is the special case where A1 � A2 � A3 � 0
and A1, A2 and A3 all lie in the shear plane.

The ¯ow varies in symmetry depending on the
values of a, c, Y and f in Eq. (1). Y � 0 is the situ-
ation of pure shear and the symmetry of the ¯ow is
orthorhombic or higher. The symmetry of the ¯ow
becomes monoclinic when any one of the following
conditions are met: Y � 908, a � c, f � 08 and
f � 908. The ¯ow is triclinic when a<c and
08<f<908. We now investigate the evolution of fold
geometry for all these di�erent ¯ow situations.

3. Dragfold evolution in monoclinic ¯ows

Consider a layer parallel to a high-strain zone
boundary (ac-plane) and the initiation of dragfolds in
the layer (Fig. 2a). Supposing that the shear direction
is vertical, the initial folds have approximately hori-
zontal axes (F parallel to the vorticity vector) and
axial planes (AP) close to the XY plane of the in®ni-
tesimal strain ellipsoid. As deformation advances, the
axial planes will rotate towards parallelism with A1

and the folds become progressively tighter. The fold
axes F have inevitable initial perturbations d within
their axial planes giving F+ (� F� d) and Fÿ

(� Fÿ d), i.e. they are curved within their axial planes.
Because of this initial orientation di�erence, F+ and
Fÿ may rotate di�erently in the ¯ow ®eld giving rise
to various ®nal fold geometries (Fig. 2). The rotation
loci of material lines can be calculated by using the
position gradient tensor, the ®nite deformation
counterpart of Eq. (1), given in Jiang and Williams
(1998, eq. 14). We have assumed the orientation for
Fig. 2 to facilitate description but the treatment and
conclusions are independent of orientation. Monoclinic
high-strain zones fall into the following four types.

3.1. Y � 908 (simple shear, Fig. 2b)

Fig. 2(b) shows the rotation loci of material lines in
a simple shear ¯ow by means of a stereogram. The
fold axes F, F+, Fÿ and the axial plane are plotted on
the stereogram. It is seen from the stereogram that F+

and Fÿ will rotate (indicated by dashed arrows) away
from F towards parallelism thus resulting in sheath
fold development as deformation progresses. The tight-
ness and ®nal geometrical shape of the sheath fold
will depend on the magnitude of ®nite strain. It is gen-
erally true in all situations that the magnitude of fold
axis rotation is a function of the magnitude of ®nite
strain.

3.2. a � c (Fig. 2c and d)

This is the situation where the boundaries of the
zone are being stretched or shortened (negative stretch-
ing) equally in all directions (the strain ellipse on the
boundary is an expanding or shrinking circle). For a
thickening zone (Fig. 2c), A2 � A3<0 and both lie in
the ac-plane, A1 > 0 and lies in the VNS making an
angle a (� cosÿ1 W

s
k) with the ac-plane, where W s

k is
the sectional kinematic vorticity in the VNS (Fig. 1).
The whole ac-plane forms a material line repulsor
plane (Passchier, 1997) and because A2 � A3, these
apophyses have no speci®c orientation within the
plane. A1 is an attractor. For a thinning zone (Fig.
2d), A1 � A2 > 0 and both lie in the ac-plane, A3<0
and lies in the VNS making an angle a (� cosÿ1 W

s
k)

with the ac-plane. The ac-plane forms a material line
attractor plane (Passchier, 1997). The progressive ro-
tation of dragfold axes (F+, Fÿ) is di�erent for
thickening and thinning zones. In a thickening zone,
the fold axes rotate away from the ac-plane (repulsor)
towards A1 via a great circle path and result in sheath
folds (Fig. 2c). In a thinning zone, the axes rotate
towards the ac-plane (attractor) via a great circle path
(Fig. 2d). Whether or not sheath folds develop depends
solely on a, the angle between A3 and the ac-plane,
which in turn is related to the sectional kinematic vor-
ticity number, W s

k. The smaller the angle (a higher
W s

k), the closer Fig. 2(d) resembles Fig. 2(b) and the
more likely sheath folds are to develop.

3.3. a<c and f � 08 (Fig. 2e and f)

In this situation, the boundaries are stretched (or
shortened, negative stretch) biaxially with di�erent
rates of stretch parallel to a and c and the shear is par-
allel to a. The transpression zone of Sanderson and
Marchini (1984) is a special thinning zone example of
this situation. Again, fold axis rotation is di�erent
depending on whether the zone is thickening or thin-
ning. In a thickening zone, F+ and Fÿ rotate towards
A1 forming sheath folds (Fig. 2e). If the zone is thin-
ning, the initial perturbated fold axes F+ and Fÿ will
rotate towards F as strain advances and therefore
towards coincidence. Instead of developing into sheath
folds, the folds become more cylindrical as defor-
mation increases (Fig. 2f).

3.4. a<c and f � 908 (Fig. 2g and h)

This situation is identical to Section 3.3 except that
the shear is parallel to c. A thrusting zone with bound-
aries stretched along the transport direction is an
example of a thinning zone. The initially perturbed
fold axes F+ and Fÿ rotate away from the mean (F )
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orientation and produce sheath folds in both thicken-
ing (Fig. 2g) and thinning zones (Fig. 2h).

4. Dragfold evolution in triclinic ¯ows

For a general case [i.e. a<c and 08<f<908 in Eq.
(1)], the ¯ow is triclinic. a and c remain two apophyses

and the orientation of the inclined apophysis (A3 for a
thinning zone and A1 for a thickening zone) can be
calculated by taking the eigenvectors of Eq. (1).
Dragfold evolution depends on the values of Y, f, a
and c because they determine the orientations of ¯ow
apophyses.

Fig. 3(a) presents the ¯ow apophyses and the ro-
tation loci of material lines in a thickening zone with
a � 0, c � 1, Y � 758 and f � 608. Fig. 3(b) shows the
corresponding initial con®guration of a dragfold.
Progressive rotation of fold axes will produce sheath
folds (Fig. 3a). In a triclinic thinning zone however,
fold evolution depends on the ¯ow properties (the
values of a, c, Y and f ) and the magnitude of the in-
itial perturbation of fold axes as demonstrated in Fig.
3(c±f). Fig. 3(c) is the material line rotation loci map
for a thinning zone with a � 0, c � 1, Y � 758 and
f � 608. Fig. 3(d) shows the initial con®guration of a
dragfold pair with fold axes F parallel to the vorticity
vector. The initial axial plane intersects the A2A3-plane
at p (black triangle in Fig. 3c). The angle between F
and p in the axial plane is denoted s and a small circle
of angular radius s and center F can be de®ned
(dashed line circle, Fig. 3c). If F+ and Fÿ lie within
the small circle (i.e. d<s) they will rotate with the
same sense towards A1 and no sheath fold will form
(Fig. 3e). If F+ and Fÿ lie outside the small circle (i.e.
drs) they will have opposite senses of rotation and
will produce sheath folds (Fig. 3f). The orientation of
ridge-in-groove slickenside striae (Lc) (Means, 1987;
Lin and Williams, 1992) and rotation loci for ®nite-
strain-related lineation (Ls) are also shown in Fig. 3(c±
f). Unlike monoclinic situations where lineations are
symmetrically distributed with respect to the fold (par-
allel to fold axes or bisecting the two branches of a
sheath fold), in triclinic situations, the lineations are
`oblique' to the fold axes as shown schematically in
Fig. 3(e) and (f). Where a sheath fold develops, it is
commonly asymmetrical and the lineations may inter-
sect one branch with a smaller angle than with the
other branch (see ®g. 4A of Carreras et al., 1977).
Where there are no sheath folds, the lineations usually
exhibit an angular relationship with the fold axes and
are consistently on one side of the fold axes as we ob-
serve in the Monashee Complex (see also ®g. 8,
McNicoll and Brown, 1994).

5. Discussion and conclusions

Dragfolds are likely to be converted to sheath folds
in shear zones with simple shear deformation paths
and also in monoclinic or triclinic thickening zones
considered in this paper. The strain of the thickening
zone types considered in this paper is constrictional
(®g. 12, Jiang and Williams, 1998). This agrees with

Fig. 3. Dragfold evolution in a triclinic thickening zone (a and b)

and triclinic thinning zone (c±f). (a) Stereogram showing the loci of

rotation of material lines (symbols as in Fig. 2) for a thickening

zone. (b) Initial con®guration of a dragfold in a thickening zone.

Sheath fold will develop. (c) Stereogram showing the loci of rotation

of material lines for a thinning zone. Depending on details of the

¯ow and the initial fold axis curvature, the fold will evolve di�erent

geometries. (d) Initial con®guration of a dragfold in a thinning zone.

(e) The situation with no sheath fold development. (f) The situation

producing sheath folds. Ls and Lc in (c) are loci of ®nite-strain-re-

lated lineation and slickenside striae lineations. Short lines in (d), (e)

and (f) schematically represent ®nite-strain-related lineations (e.g.

mineral lineations). See text for further discussion.
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Fletcher and Bartley (1994) and Fletcher et al. (1995)
who have concluded that sheath folds are more likely
to develop in constrictional non-coaxial shear zones.
For thinning zones with monoclinic symmetries, only
the situation where the shear direction is parallel to
the maximum stretching direction of the boundary
favors sheath fold development. If the shear direction
is parallel to the minimum stretching direction of the
boundary, dragfolds become more cylindrical as defor-
mation advances. Therefore, in a transcurrent shear
zone with vertical stretching>strike-parallel stretching,
such as the transpression zone of Sanderson and
Marchini (1984), one would not expect dragfolds to
evolve into sheath folds. If a thinning zone has bound-
aries equally stretched in all directions, fold evolution
depends on the sectional kinematic vorticity number.
The closer it is to unity (simple shear) the more sheath
folds are likely to develop. In a triclinic thinning zone,
fold evolution depends on the details of the ¯ow and
the value of the initial fold axis perturbation, as
explained in Fig. 3(c±f).

Not all folds in high-strain zones develop as drag-
folds as mentioned in the introduction. They may also
develop by buckling of layers or dykes inclined to the
shear zone in such a way that their intersection with
the shear plane, and hence the resulting fold hinge-
lines, are not parallel to the vorticity vector. In this
case the resultant geometry re¯ects their initial asym-
metry with respect to the ¯ow. However, once the in-
itial geometry of a fold is determined, its successive
rotation can be investigated by means of the rotation
loci map. Two problems with this approach are: (i)
fold axis rotation may not be passive (Mawer and
Williams, 1991); and (ii) ¯ow may be non-steady and
the kinematics may change continuously (Williams and
Compagnoni, 1977; Jiang and White, 1995). All of
these factors may contribute to a particular observed
geometry and it can be di�cult, if not impossible, to
identify. However, by examining all existing fabric el-
ements including indicators of vorticity, non-coaxiality
and displacement, better constraints on the natural de-
formation are possible. For example the consistent
obliquity between the fold and lineation and lack of
sheath folds in a high-strain zone where fold axes have
rotated may suggest that the deformation path was tri-
clinic.
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